Vectorization is great and you should all use it

These notes introduce a bunch of simple but helpful vectorization identities to try and emphasize
why this formalism is useful. Essentially these notes are some things that I wish I’d noticed/been
told sooner. The moto to take away is that: Vectorization makes life easier because matrices (e.g.
density operators) become vectors and linear maps (e.g. channels) become matrices.

Contents

1 Vectorization 2
2 The super useful Ricochet Identity 2
3 Trace as an inner product 3
4 Expectation Values 4
5 Unitary Evolutions 4
6 Quantum Channels in Kraus Form 4
7 Product of Unitaries 5
8 Concatenation of Channels 5
9 Averaging over Unitaries 5
10 The moment operator 7
11 Tensor products of operators 8
12 Generic Map Defined by Basis Action 9
13 Pauli Transfer Matrix Formalism 10

1 Vectorization

To recap. Let A be an operator on a Hilbert space with orthonormal basis {|i)}, written as
A=y i) (5.
4,3

We define its vectorized form as

ai
a2

aid
a21
a22

vee(4)) = 3 ay i) =

424

ad1

add

where |ij) = |i) ® |j) is the standard basis in the tensor product space.

Notice that the vectorization operation vec(-) is a bijection. In particular, one can take the
“de-vectorization” map de-vec(-) = >_, (i, j[-)[7)(j|, such that de-vec(|vec(4))) = A.

2 The super useful Ricochet Identity
A super useful vectorization identity is that:
vec(AX B)) = (A ® BT)|vec(X)). (1)

You saw the proof in an earlier lecture but I'll just include it here for completeness:

Proof. Using the shorthand X;; = (i| X |j), the vectorization of X is defined by
[vee(X)) = > Xij i) @ |5) -
0,

Thus,
[vec(AX B)) = Z(AXB)U) ® |5) ,
ij
with
(AXB);; = Z Air X1 Byj -
k.l

It follows that
vec(AXB)) = Y Ay X Byj |i) ® |5) -
i3,k
On the other hand, we have
(A® B")|vee(X)) = (A® BT) Y X k) ®|1) .
k.l

Using the definition of the Kronecker product,
(Ao BT)(|k) @ |I) = Alk) @ BT |I) = ZAMB Y@ 15) -

Thus,

(A® BT)|vec(X Z Ak X1 B]z |5} ®17) -
,7,k,l

Noting that by definition qu-; = Bj; and that the dummy indices are summed over, we can relabel
the summation indices to see that this expression is identical to the one obtained for |vec(AX B)).
Hence,

[vec(AXB)) = (A® BT) |vec(X)) ,

which completes the proof. O

3 'Trace as an inner product

For two operators

A= ay li)(j| and B =) by k),
1,7

k,l
their Hilbert—Schmidt inner product is defined as

(A, Bygs == Tr (ATB) .

In vectorized form this is equivalent to the (vector) inner product between the vectorized versions
of A and B. That is,

Tr (ATB) — (vec(A)|vec(B)) 2)

We can see this by writing out the two expressions explicitly and comparing. Namely, we have

(4, B)us :=Tr (ATB) = Tx > aigbig)i '] | = 3 abig (A1) = Zazkbzk

iji'j’ ijj'k

Similarly, as

vec(A)) = aij lij) and |vec(B)) = b |k1),
i,j k.l
the inner product in the vectorized space is

(vec(A)|vec(B Z a;; bij = Zalk ik -

i,k=j

Thus the two expressions are equivalent, as claimed.

4 Expectation Values

A very common thing to study in quantum information theory (well, all of quantum mechanics,

actually) is an expectation value for an observable O after applying a channel £ to a state p:

Tr[OE(p)] -

In vectorized form we see immediately from Eq. (2) that this takes the form:

Tr[OE(p)] = (vec(O)|vec(E(p)))

That is, we can compute expectation values by computing |vec(E(p))) and taking its inner product

with |[vec(O)). So how do we compute |vec(E(p)))?

5 Unitary Evolutions
Consider a density operator p transformed by a unitary U,
p — UpU t

in vectorized form this becomes

’vec(UpUT)> = (U U")|vec(p)) .

We can see this immediately from Eq. (1) that
[vec(AXB)) = (A ® BT)|vec(X))

and letting A=U, B=U" and X = p.

6 Quantum Channels in Kraus Form

Consider a quantum channel with Kraus operators { K}
E(p)=> KpK'.
K

In vectorization form we have

vee(£(p))) = >_ (K @ K*) [vec(p))

K

Thus the effect of the channel on the state p (a matrix) has been transformed into the action of a

matrix Mg =), (K ® K*) acting on the vector |vec(p)).

7 Product of Unitaries

Suppose the applied unitary is a product of unitaries,
U=UUp_1---U.

Then the transformation
p— UpUT

becomes, using our earlier result for each unitary,
‘Vec(UpUT)> = (U U")|vec(p)) .
Exploiting the multiplicative property of the Kronecker product, we have:

‘VGC(UpUT)> = U, @U;) (Up—1 @ Up_y) -+ (U @ UY) [vec(p)) .

8 Concatenation of Channels

Consider two quantum channels £ and €@ with Kraus representations:
1 D\ 2 9\ T
V() =3 KV o (KV)' e@p) =S k) (k7).
J Kk

Their concatenation & = £2) 0 €M) acts as
E(p) = ED(£D(p)).

In vectorized form,

and then

vee(&(p) = (K @ (KP)") [vecc®(p))).

Thus, the overall mapping is given by:

[vee(&(p))) = [Z (K @ (K}f))*)] SO (K @ (KD))| Ivee(o))

k

9 Averaging over Unitaries

Consider the averaged expectation value over an ensemble of unitaries:

EpTr [Ue U} 0} ,

where Ug = U(0) is some unitary that depends on a real vector of parameters €. Using the
vectorized form, we have:

Tr [ngUg O} = (vec(O)| (Ug ® U;) [vec(p)) .
Since the expectation value is linear, the averaging can be brought inside the sum:
Eo Tt [U(,pU; o} = (vec(0)| (Eg [Ug ® U;;]) Ivec(p)) .

Defining
M;EG[U(;@U;],

we can express the averaged expectation value succinctly as
EoTr [UepUg o} = (vec(O)| M |vec(p)).

Thus the action of evolving and averaging can be captured via a single matrix M which we sandwich
between |vec(p)) and |vec(O)).

Example: Averaging over a Single-Qubit Z Rotation Consider the single-qubit unitary

rotation about the Z-axis: /2
—i07/2 e’ 0
U.(0) = e 712 = (0 €i6/2> ;

where 6 is a random variable uniformly distributed in [0, 27]. The vectorized form for the average
in case 3) is given by:
M = E, [Uz(ﬁ) ® UZ(H)*]

We first compute the tensor product:

. 6—1'0/2 0 €i0/2 0
v ovor = ()" n)e ()).
In the standard basis {|00),|01),|10),|11)}, this tensor product is diagonal:
U.(0) ® U,(0)" = diag(e_w/2ei9/2, e 0/2=10/2 (i9/2,i6/2 €i6/26—i0/2) _ diag(l, e ¢t 1>.

Taking the average over 0 yields:

1 2))
M= — diag(l, e i, 1) do.
27T 0
Since
1 27)
/ et do = 0,
27'(' 0
we obtain:

M= diag(l, 0, 0, 1).

Thus, we can write:
M =100) (00| 4 |11) (11].

This matrix M then captures the average effect of a Z rotation on the vectorized density matrix.
Consequently, the averaged expectation value for an observable O is given by:

Ey Tr|U.(0)pU.(0)1 o] = (vec(O)| M|vec(p)),

with
M = |00) (00| + |11) (11].

We note that this is just the vectorized version of the completely dephasing channel. This should
make sense to you (particularly if you did my QP2 course) because we know that the effect aver-
aging over random rotations around the Z axis (i.e., twirling a state with R, rotations) kills of all
coherences with respect to the Z eigenbasis (the computational basis).

10 The moment operator

More generally, higher order moments of the form
t k
Eo (Tr [ngUe 0}) .

can be computed in vectorized form by computing an appropriate momentum operator as follows.
We first note that as
Tr[X]? = Tr[X @ X]

we can write
Eeg (Tr [ngUg 0}’“) — Ey (Tr[(UepUg o)@kD — E, (Tr[(Ugak PP (U ER) o@k]) .
Next we vectorize this as
Eo (<vec(o®k)\vec(ngp®k(Ug)®k)>) = By (<vec(o®k)|U§>k ® U;®k\vec(p®k)>) = (vec(O®F)| My|vec(p®F))
where in the final line we have defined the moment operator

M, = Eg (Ugi)’f ® U;®’“) .

For example, the variance of an expectation value fg = Tr [ngUg O] over a circuit U takes the

form
Varg[fo] = Ee (Tr [UepUg of) — <E9 <Tr [UepUg OD)2
= (vec(O%?)| Ma|vec(p®?)) — ({vec(O)|M;|vec(p)))?.

11 Tensor products of operators

In the note above we had terms of the form |vec(p®*)). Now if you do not think about things too
carefully you might be tempted to assume that |vec(p®¥)) = |vec(p))®¥.... but NO. This is wrong.
Let’s look more carefully as the action of the vectorization operation on tensor products. We

assume n n
A= a1y (Gl, B=>_ bu lk)(
ij=1 k=1

Then their vectorizations are given by

n

vee(A)) = Y ag lif), [|vec(B)) = > by |kl)

ij=1 k=1

Thus, the tensor product of these vectorizations is

[vec(A)) ® |vec(B)) = > aibu lij) @ |kl) = > aijbu lijkl)
4,5,k,0=1 ,7,k,l=1

On the other hand, the Kronecker product is defined as

A® B = Zn: a;j by (W (j|> ® (V@ <l\) = Zn: a;j br (W@ <ﬂ|),

1,5,k,1=1 i,j,k1=1

and its vectorization yields

|V€C(A & B)> = Z Qi blcl |Zk> ® ’jl) = Z Qg bkl ’Zk’jl>
,5,k,l=1 1,5,k,l=1

Notice that the order of the basis vectors differs: the tensor product |vec(A)) ® |vec(B)) arranges
the indices as (i, j, k, 1) while |vec(A ® B)) arranges them as (i, k, j,1).

(Note, if you look back at the definition of the moment operator M}, in the previous section, it
should now be extra clear why we had “Ug@k @ Ug®* rather than “(U @ U*)®k”.)

Remark: As the order of basis vectors of |vec(A ® B)) and |vec(A)) @ |vec(B)) is the only
difference of their expressions, we can easily see that, for inner products, the following equality
holds

(vec(C@ D)lvec(A®B)) = Y > ciydjpaibu (K57 |ikil) (4)
i3k =143,k l=1

= Y pai (5ig) D diy b (KT [KL) (5)

i 5 i g=1 kol k! =1
= (vec(C)|vec(A)) (vec(D)|vec(B)) , (6)

where C' and D are also n X n matrices.

We write the inner products of the vectorizations back into traces of the corresponding matrices,
and obtain Tr[(C' ® D)Y(A® B)| =Tr [C’TA] Tr [DTB] , which verifies the equality for trace of tensor
product of matrices.

12 Generic Map Defined by Basis Action

Consider a linear map £ defined by its action on the basis operators:
e(liyGl) = D¢ 10
k)l

For a general operator

p="> pij i) (j
i3
linearity of £ gives:

E0) =D o (I 431) = 2D pig il 1K)

4,j kil

Taking the vectorized form yields:

|vec(E ZZPUC |k1).

5, kil

We now define a matrix M that encapsulates the action of £ in the vectorized space:

M = chl |k1) (ij].

,7,k,l

With this definition, the action of £ in vectorized form is
[vec(E(p))) = M |vec(p)) ,

and the expectation value of an observable O becomes

Tr [E(p) O] = (vec(O)| |vec(E(p))) = (vec(O)] M [vec(p)).

Example for Transpose Map Consider the linear map E defined by the transpose:
&(1i) 1) = 1) (il
p=> pij i) (j
4,3

For a general operator

its transpose is given by

T _ s
= pij 1) (i
2%
Using our vectorization convention,

|VeC me |2] ,

the vectorized form of the transposed operator is
T ..
[vec(p)) = " pij 17 i) -
4,3
We now define a matrix M that captures the action of the transpose on the vectorized state.

In bra-ket notation, this is given by

M= "|ji)(ij] = — SWAP
1,J

o O O =
S = O O
S O = O
— o O O

in the standard {|00), |01), |10), |11)} basis. This permutation matrix swaps the indices as re-
quired by the transpose map,

[vec(p”)) = M [vec(p)
13 Pauli Transfer Matrix Formalism

The choice of basis for representing operators is of course arbitrary. Above we worked in the
standard computational basis: {|0) = |00),|1) = |01),|2) = |10),|3) = |11)}. One may, however,
choose to work in the Pauli basis. For a single qubit we define the basis as

I=10), X=|), Y=2), Z=|3).

A quantum operation (or channel) acting on an operator can be described by its action on the
Pauli basis elements. Namely, if

E(P)=3_CiF;
J
then the coefficients C} form the Pauli Transfer Matriz (PTM),
M=) Cjlidil, (7)
]
and fully capture the action of the map.
Example: Hadamard Gate in the Pauli Transfer Matrix formalism. The Hadamard gate

is given by
1 (1 1
H=— .
V2 (1 —1)

Its action on the Pauli matrices is well known:

HIH'=1, HXH'=Z2 HYH'=-Y, HZH'=X.

10

Hence, the PTM for the Hadamard gate is

-1
0

o O O
= o O O
oS O = O

We can then use the PTM to compute the action of the Hadamard gate on any operator written
in the Pauli basis.

Let’s now use this example to show that the PTM formalism is equivalent to the general
vectorized expression for a linear map we saw in Section 12. Recall that we saw earlier that
the action of a unitary channel U(p)UT in vectorized form is given buy

[vee(E(p))) = M |vec(p)

where M = U ® U*. In the computational basis we know that
1 (1 1
H=—
a0

1
M:H®H*:§

and thus we have that

—
|
—_
—_
|
—_

1 -1 -1
1 -1 -1 1

This matrix describes the action of the Hadamard gate when the state is vectorized in the com-
putational basis. Now, by choosing the Pauli basis we are simply working in a different operator
basis. In particular, the set

1 1 1 1
{ﬁ eclD)}, s [vee2)), = fvec(Y), - |vec<Z>>}

is equivalent (up to unimportant phase factors) to the standard Bell basis:

&) = \2(|00>+|11>),
|wt) = \2(|01>+|10>),
&) = \}5(!0@ —|11)),
™) = L(|01> — |10)).

S

Let S be the change-of-basis matrix that maps the computational (Bell) basis to the normalized

vectorized Pauli basis: 1
— |vec(P;)) =S |b;),

11

where {|b;)} is the Bell basis. Then the representation of the Hadamard map in the Pauli basis is
given by
M=S(H®H)S".

One can show (by explicit calculation) that this change-of-basis yields exactly

1 0 0

0 0 1
M =

0 0 -1 0

01 0 O

Thus, the PTM in the Pauli basis is equivalent to the superoperator H ® H in the computational
basis, confirming that the description of the map is independent of the chosen basis. But the
description is much more intuitive in the Pauli (or, equivalently, Bell) basis. Hence the advantage
of working in the Pauli basis.

12

	Vectorization
	The super useful Ricochet Identity
	Trace as an inner product
	Expectation Values
	Unitary Evolutions
	Quantum Channels in Kraus Form
	Product of Unitaries
	Concatenation of Channels
	Averaging over Unitaries
	The moment operator
	Tensor products of operators
	Generic Map Defined by Basis Action
	Pauli Transfer Matrix Formalism

